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V. CONCLUSIONS

The feasibility of applying the nonorthogonal FDTD algorithm to

analyze nonrectangularv iad iscontinuities was demonstrated, and the

transient analysis of the equivalent circuit was analyzed with the help

of window filters. To help eliminate the effects of the inaccurate

higher frequency components in the time-domain waveforms, the

Harming window was employed with the result that more realis-

tic time-domain waveform behavior was obtainable for qualitative

analysis.
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Slab Line Impedances Revisited

E. Costamagna, A. Fanni, and M. Usai

Abstract-Accurate solutions for impedances and charge distributions
in slab lines and rectangularly shielded lines are obtained by numerical
inversion of the Schwar=Christoffei (SC) conformai transformation.

Circular inner conductors are considered, putting to the test the relatively
simple numerical methods we have utilized, and results are successfully
compared to the best data availabie from the literature. The method,
besides supplying accurate global parameters, such as capacitances and
impedances, is aiso shown to provide good evaluations for local charge

densities. Equipotential and field lines can be easily derived, and accurate
caicul~tion of local field maps is shown possible, even from approximate

geometries, when boundary conditions are not completely known.

I. INTRODUCTION

Powerful conformal mapping techniques by means of numerical

inversion of the Schwarz Christoffel formula have already been

described in [1] and [2]. and successful applications to various

structures of TEM transmission lines have been presented in [3]-[7].

In particular, relatively simple algorithms, as described in [2], have

been shown suitable to cope with complex geometries, including

curved conductor boundaries approximated by polygons with large

number of sides. Moreover, accurate results have been derived in

the application to domains with partiaily undefined boundaries, by

imposing suitable magnetic walls where the flux line shape can be

easily guessed.

The same algorithms give us the possibility of revisiting slab lines

and rectatigularly shielded lines with circular inner conductors, for

which several results have been already provided both by exact

solutions and approximate numerical calculations. In [8] and [9] a

moments method with a point matching technique was employed to

compute even- and odd-mode impedances and coupling coefficients

for coupled slab lines; in [10] rectangularly shielded lines were

analysed by a Carleman–Vekua method; in [11] a moment method

combined with an image-mode Green’s function was proposed, and

the results inchrde strrface charge densities on the conductors of

coupled slab lines. An extensive survey of available data for slab

lines and related structures is supplied by Gunston [12, ch.4], and

several TEM transmission lines with rectangular inner or outer

conductors have already been analyzed by means of numerical

conformal mapping in [6] and [7].

The various structures considered in this paper can be derived from

the open sided, coupled slab line geometry in Fig. 1: two cylindrical

rods are placed symmetrically between two parallel ground planes.

Even- and odd-mode capacitances and impedances are computed by

introducing electric or magnetic walls orthogonally to the ground

planes midway between the rods, thus defining a through line

geometry; unscreened and rectangular outer conductor slab lines are

derived by considering a single rod and open or electric wall sides.

II. SINGLE LINE AND COUPLED LINE IMPEDANCES

Single rod line impedances are considered first. A large amount

of data are provided by Gunston: see [12, Table 4.1] for rectangular

outer conductors and Table 4.3 for unscreened slab lines. Impedances
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Fig. 1. Configuration of two-conductor slab-lines.

TABLE I
CAPAC~ANCESOF A SINGLE ROD BETWEEN PARALLEL PLANES (OPEN

SIDES) AND CENTERSDIN A RECTANGULAR OUTER CONDUCTOR

(SHIELDED): d IS THE ROD DIAMETER, b IS THE DISTANCE BETWEEN

ToP AND BOTTOM PLANES, c IS THE WIDTH OF THE RECTANGLE

Resentwork [11,Tab.1] Resent work [10, TabI]
Open si6es

m
Shielded

Cib cm ccz cl% w
0.8 Z.3 7.432 7.378 7.462
06 21 4.241 4.249 4,268
0.4

4.268
19 2.718 2730 2742

0.2
2.742

1.7 1.6’37 1,707 1.715 1715
0.1 1.6 1.235 1.242 1,248

computed following [2] have already been shown to be in very good

agreement with Gunston’s Table 4.1 and other data in [6, Tables 4, 5,

6], for various ratios of the outer conductor dimensions. For the open

sided cases, good agreement has been found with all the data quoted

by Gunston in Table 4.3 (from Wheeler, Knight, Frankel, Chisholm,

Mahapatra and Lln and Chug), and differences do not exceed 0.03%

compared to the “virtually exact” values quoted from Wheeler and

Knight for dh ~ 0,9.

Some resu]~s are provided in [10, Table I] for shielded case and in

[11, Table I] for the open sided case: again the agreement with our

confo~al mapping data is very good, as can be seen in Table I.

For coupled line structures, accurate self and coupling capacitance

data have been available for some time in both numerical and

graphical form, in particular in [13]. We limit our comparison to

some muperical data.

In Table II even- and odd-mode geometrical capacitances are

successfully compared with the values reported in [10, Table II],

[11, Table 11] and [14, Table I]. A broad range of d/b ratios is

considered in [8, Tables I and II]: maximum differences between

our even- and odd-mode impedance values and Stracca’s et al. are

limited to about 0.06% (which is the comparison accuracy achievable

with the published four-figure data), except for two odd-mode cases,

where differences were of about 0.1 and 0.2T0.

Circular conductors have been approximated with polygons having

number of sides ranging from 50 to 100; in the case of the comparison

with [8], both 50 and 80 sides have been employed in the most

critical cases and the results coincide with at least four figures.

Their accuracy can be further checked by computing the coupling

coefficients, involving small differences between even- and odd-mode

impedances: the results appear in Fig. 2, and allow to successfully

extend the range of curves, with respect to the range considered in

[9], for at least three decades.

III. CHARGE DENSITIES AND FIELD MAPS

In the above calculations, the SC formula has been inverted to

provide transformation from the analyzed geometry into the real axis

of an intermediate complex plane, and then directly applied to provide
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TABLE It
CAPACITANCESOF TWO-ROD CONFIGURATIONS

Presentwork Chisholm I Levy Fikmns& TaI Lu &
McDermott Tsstuamgas Olesen
~14, Tab. II [14, Tab. I] [ 10, T8h.II] [11,Tab. III

Cle c/c u& Ck c/e Ck cl? cl. Cle Clc
Wb sib .,.. M6 eve. odd even odd We” odd we” odd

0.354 0,176 3.9137 7.5X6 3.9142 7,5347 3,9153 73528 3.9132 75494 3912 7543
0,4@3 0,226 4.5052 7,5397 4.5093 7,534’7 4.5080 7,5401 4,5043 75SSS
0,436 0.280 5,0344 7,5412 5,0281 7,5347 5032 7.5501 50332 75464
0.462
0,482
0,498
0s10
0,518
0.534
0344
0 4N3
o.4ea
o.4@3
o 4@3
0,403
0.4CM
0403
0400

0,338 5,4731
0,398 5,8465
0,462 6.1728
0.528 6.4404
0.S96 66427
0,805
1,1!s3
0,080
0,120
0.160
0.202

7,0741
7,3833
4,1657
4,2641
4.3587
4.4489

7.5347
7.5366
7.5464
7,5525
7,5384
7,5369
7,5322

112405
9.5140
8.5167
7,8594

5.4731
5,8497
6,1648
6.4257
6,6404
7,0727
7,3855
4,1646
4.2631
4.3578
4,4483

7.5347
7s347
7,s341
7,5347
7.5347
7.5347
7.5347

11,07s3

9.4595
8,4935
7.8478

5.4718
5 SW
6.1721
6,4380
66424
7,0710
7,3806
4,1553
42626
4,3516
4,4444

75371
75339
7.5436
7,5514
75371
7,5359
7,5285

11,2882

9.5317
8,5919
7,8652

54718
5,8455
61721
64399
6.6421
7,0721
7,3819
4,1651
4.2634
4,3579
4,44s1

7,5343
75339
7.5451
75508
75365
75361
75304

11.2371
9,511S
85152
7.8584

0,240 4.5346 73924 4,5340 7,3863 4,5358 7,3982 4,5337 73917
0403 4 S273 63905 48273 6,3903 4.S263 6,3914 4,S265 63903
0 61X7 50821 58856 50826 5,8862 5,0819 s,8848 5,081S 5,S848
0.760 5,2131 5,6947 5,2134 5,6949 5,2130 56946 5,2128 56940

7.38S 7535
4167 11.2A0
4,265 9.55s

5.217 5,7(X3

J,o-,~
o 1 2 3 4

sib

Fig. 2. Computed (x, *,+, o) and linearly interpolated values for the
coupling coefficient.

further transformation from this real axis into a rectangle, in which

opposite sides are electric or magnetic walls and capacitances we

readily evaluated.

The sides of the analyzed geometry which lie on electrodes are

mapped into this rectangle with lengths which account for the side

charges: in the limit, reducing side lengths, local charge densities can

be accurately evaluated.

The number of sides used hereto accurately describe the conductor

boundaries lead to charge density evaluations which appear to be

suitable for many practical purposes. As an example, consider the

structure of Fig. 1. Side charges for the rod electrodes have been

computed, representing the rods with 80-side regular polygons, and

actual charge points have been plotted in Fig. 3 after suitable

normalization. Comparison of these curves with Fig. 2 in [10] reveals

negligible differences, at least at the draw level, except on the right

side of Fig. 3(a). In thk region, our curve 2 is higher than curve

3, instead of lower as in [11, Fig. 2(a)]. Note that, for curve 1,

dimensions of s/b = 1 have been assumed, instead of s/b = 1.06,

as reported in [11], probably due to a typing error.

When the parameters of the two SC formulas leading from the

intermediate complex plane to the analyzed structure and to the final

rectangle are known, it is very easy to map any defined pattern from

one geometry to the other, and methods are described in [1] and [2].



158 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 1. JANUARY 1993

40 -

30 -

~
1

20

2

3 :~-.- —&~._. -—.—

A B c

(a)

30 I

25 -

20 - 1

515 -

In1-

H IG

F

c

A NB

Fig. 4. Equipotential and flux lines of shielded single conductor line. Dashed
lines are derived from arbitrarily imposed boundrq magnetic walls.

or quadruple with 500 or only 200 segments. More significantly, it

can be noted that equipotential and field lines start and end on the

real axis of the intermediate plane: accuracy can be appreciated by

noting that the end points of 1000 segment patterns are found in this

plane at a distance from the real axis of the order of 1/10 of the
/:4 length of their last segment.

‘i___dd
A B c

(b)

Nevertheless, straightforward definition of the boundary to be

mapped, as for the above CD and EF magnetic walls, is not always

possible; sometimes, the actual structure cannot be accurately mapped

using the simple methods in [2].

The first problem is not insurmountable in most practical cases:

conforrnal mapping of approximate geometries have already been

considered in [14]. and methods to analyze structures by assuming

approximate magnetic walls boundaries with some error evaluations

Fig. 3.
the first conductor is 1V; the second conductor amdthe two conducting ulanes

Surface charge densities on the conductors of Fig. 1. The voltage on have been presented in [3] and [5]. To show that useful results can

are grounded. (a) First conductoq (b) second conductor. (1) d/b = ;.~6, s/b

1.00 (2) d/b = 0.40, S/b = 0.48; (3) d/b = 0.544, S/b = 1.168.

Equipotential and flux lines can be determined in the rectangle by

inspection, and it seems worth discussing application of the simple

mapping predictor-corrector techniques of [2]. Consider for instance

the structure shown in [10, Fig, 3], which is reported in Fig, 4.

Rectilinem magnetic walls CD and EF have been imposed, normal to

the outer and inner conductors in a region where flux line patterns can

be easily divined, and an accurate map of the boundary ABCDEFGH

has been obtained by mapping into infinity the side AH; twenty-four

side poligons have been assumed to represent the inner conductor.

The same equipotential and field lines considered in [10] have been

derived and they are undistinguishable from that plotted in [10, Fig.

3] (see Fig. 4, continuous lines).

A predictor-corrector algorithm (from the rectangle to the interme-

diate complex plane) and the Heun algorithm (from the intermediate

to the analysed geomet~ plane) have been applied as in [2] by

segmenting patterns into 200, 500. and 1000 parts. Errors in the

obtained maps, evaluated from the distance between the actttaf end

point and its due position (when known) are of the order of 0.05% of

the inner conductor diameter with 1000 segment patterns; they double

be derived, at least for significant regions of actual structures, local

errors have been stressed by imposing incongruous magnetic walls in

Fig. 4 on the segments IL and MN, and the new HILMNA geometry

has been analyzed.

As expected, in proximity of the imposed magnetic walls, equipo-

tential and flux lines look very different from the previous exactly

computed ones (see Fig, 4, dashed lines), but a large region can be

recognized where fields are relatively unperturbed and correct pattern

shapes are retained.

This suggests an approach to the second problem, i.e.. to consider

partial geometries, defined with some overlap near the fictitious

boundaries, which are normally easily managed by the conforrnal

mapping procedure.

IV. CONCLUSIONS

Slab line structures have been revisited, and results from various

analysis methods have been compared with capacitance or impedance

values derived from Schwarz-Chnstoffel conformal mapping, and

very good agreement has been found.

In addition, surface charge densities evaluation and field map

assessment via conformal mapping have been briefly discussed. Some

topics related to partial mapping and to the defined geometries have

also been dealt with.
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A Note on Experimental Determination of Small-Signal

Equivalent Circuit of Millimeter-Wave FETs

A. Eskandariart and S. Weinreb

Abstract-New expressions for determination of the parasitic induc-
tances Lg, Ld, and L, in the small-signal equivalent circuit of high-
frequency Field Effect Transistors (FET’s) are derived, based on the

“active/passive” (also known as “hot/cold”) measurement technique de-
veloped in literature. These equations are required when the size of
parasitic capacitances is such that their effect on the forward-biased gate

measurement cannot be ignored, as has been the case with our miltimeter-

wave transistors. The method prodnces an equivalent circuit which has

been used successfttlly for design of multi-stage amptffiers at 60 and 94

GHz.
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Fig. 1. The smafl-signal equivalent circuit of the PET’s including the
parasitic elements. The intrinsic FET model is shown in the dashed box.

I. INTRODUCTION

The most common method for determination of the equivalent

circuit of a microwave Field Effect Transistor (FET) has been through

minimization of the difference between measured and computed

S-parameters versus frequency. However this procedure may not

produce unique elemeut values for the equivalent circuit and the de-

pendence of element accuracy upon measurement accuracy is unclear.

Dambrine et al. [1] and Berroth and Bosch [2], [3] recently presented

methods that include S-parameters of the FET biased into a “passive”

state, such as pinch-off or forward-biased gate, to provide additional

data on the equivalent circuit. With this additional data it is possible

to uniquely determine equivalent circuit values from measurements

at a single frequency. Multiple-frequency measurements can then be

utilized to test the accuracy of the data and the correct topology of the

equivalent circuit as manifested by invariance of the eiement vahtes

with frequency.

The purpose of this letter is to make a necessary addition to the

equations given in [ 1]-[2] and present experimental data showing

invariance of equivalent circuit vahtes from 1 to 18 GHz.

11, BACKGROUND

In “active/passive” measurement techniques, the equivalent circuit

is conceptually divided into intrinsic and extrinsic parts. In a com-

monly used FET equivalent circuit shown in Fig. 1, the intrinsic

part is shown in a dashed box. The extrinsic part includes the

parasitic elements, i.e., the source, drain and gate resistances, and

any additional inductances or capacitances which may exist due to

the device layout, via holes, bonding pads, etc.

The parasitic elements are determined from the “passive” FET

measurements, where the FET is biased similar to a diode, i.e., with

zero voltage on the drain terminal. In this mode of operation the

intrinsic part of the FET model in Fig. 1 should be replaced with an

appropriate diode model that will depend on the bias voltage on the

gate. Two types of gate biasing can be employed.

In the first type, a gate bias is chosen such that the channel under

the gate is completely pinched off. This usually means a negative

gate voltage, The drain and source terminais are at zero potential.

The capacitive components of the equivalent circuit are dominant

under this bias condition. The circuit diagram for this case is shown

in Fig. 2, where it is assumed that the gate-source and gate-drain

capacitances are equal to C6 (actually, depending on the lay-out

structure of a FET, there is a small difference between these two

capacitances). The measured S-parameters show capacitive behavior

and are converted to Y-parameters. The vahte of cb is determined

from the imaginaty part of }iz. The values of Cpd and Cpg can then

be determined from the imaginary parts of 1522 and Yll simply by

removing the contribution of cb to these ~’-parameters.
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