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V. CONCLUSIONS

The feasibility of applying the nonorthogonal FDTD algorithm to
analyze nonrectangular via discontinuities was demonstrated, and the
transient analysis of the equivalent circuit was analyzed with the help
of window filters. To help eliminate the effects of the inaccurate
higher frequency components in the time-domain waveforms, the
Hanning window was employed with the result that more realis-
tic time-domain waveform behavior was obtainable for qualitative
analysis.
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Slab Line Impedances Revisited

E. Costamagna, A. Fanni, and M. Usai

Abstract—Accurate solutions for impedances and charge distributions
in slab lines and rectangularly shielded lines are obtained by numerical
inversion of the Schwarz-Christoffel (SC) conformal transformation.
Circular inner conductors are considered, putting to the test the relatively
simple numerical methods we have utilized, and results are successfully
compared to the best data available from the literature. The method,
besides supplying accurate global parameters, such as capacitances and
impedances, is also shown to provide good evaluations for local charge
densities. Equipotential and field lines can be easily derived, and accurate
calculation of local field maps is shown possible, even from approximate
geometries, when boundary conditions are not completely known.

1. INTRODUCTION

Powerful conformal mapping techniques by means of numerical
inversion of the Schwarz Christoffel formula have already been
described in [1] and [2]. and successful applications to various
structures of TEM transmission lines have been presented in [3]-[7].
In particular, relatively simple algorithms, as described in [2], have
been shown suitable to cope with complex geometries, including
curved conductor boundaries approximated by polygons with large
number of sides. Moreover, accurate results have been derived in
the application to domains with partiaily uridefined boundaries, by
imposing suitable magnetic walls where the flux line shape can be
easily guessed.

The same algorithms give us the possibility of revisiting slab lines
and rectangularly shielded lines with circular inner conductors, for
which several results have been already provided both by exact
solutions and approximate numerical calculations. In [8] and [9] a
moments method with a point matching technique was employed to
compute even- and odd-mode impedances and coupling coefficients
for coupled slab lines; in [10] rectangularly shielded lines were
analysed by a Carleman—Vekua method; in [11] a moment method
combined with an image-mode Green’s function was proposed, and
the results include surface charge densities on the conductors of
coupled slab lines. An extensive survey of available data for slab
lines and related structures is supplied by Gunston [12, ch.4], and
several TEM transmission lines with rectangular inner or outer
conductors have already been analyzed by means of numerical
conformal mapping in [6] and [7].

The various structures considered in this paper can be derived from
the open sided, coupled slab line geometry in Fig. 1: two cylindrical
rods are placed symmetrically between two parallel ground planes.
Even- and odd-mode capacitances and impedances are computed by
introducing electric or magnetic walls orthogonally to the ground
planes midway between the rods, thus defining a through line
geometry; unscreened and rectangular outer conductor slab lines are
derived by considering a single rod and open or electric wall sides.

II. SINGLE LINE AND COUPLED LINE IMPEDANCES

Single rod line impedances are considered first. A large amount
of data are provided by Gunston: see [12, Table 4.1] for rectangular
outer conductors and Table 4.3 for unscreened slab lines. Impedances
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Fig. 1.

Configuration of two-conductor slab-lines.

TABLE 1
CAPACITANCES OF A SINGLE ROD BETWEEN PARALLEL PLANES (OPEN
SIDES) AND CENTERED IN A RECTANGULAR OUTER CONDUCTOR
(SHIELDED): d 1S THE RoD DIAMETER, b IS THE DISTANCE BETWEEN
Top AND BoTTOM PLANES, ¢ IS THE WIDTH OF THE RECTANGLE

Present work  [11, Tab.I] Present work [10, Tab 1)
Open sidey Shielded
dfb c/b Cl2e Ci2e Cl2e Cle
0.8 23 7.432 7.378 7.462
06 21 4241 4.249 4.268 4.268
04 19 2718 2730 2742 2.742
0.2 1.7 1.697 1.707 1.715 1715
0.1 1.6 1.235 1.242 1.248

computed following [2] have already been shown to be in very good
agreement with Gunston's Table 4.1 and other data in [6, Tables 4, 5,
6], for various ratios of the outer conductor dimensions. For the open
sided cases, good agreement has been found with all the data quoted
by Gunston in Table 4.3 (from Wheeler, Knight, Frarnkel, Chisholm,
Mabhapatra and Lin and Chug), and differences do not exceed 0.03%
compared to the “virtually exact” values quoted from Wheeler and
Knight for d/b < 0.9.

Some results are provided in [10, Table 1] for shielded case and in
[11, Table I for the open sided case: again the agreement with our
conformal mapping data is very good, as can be seen in Table L

For coupled line structures, accurate self and coupling capacitance
data have been available for some time in both numerical and
graphical form, in particular in [13]. We limit our comparison to
some numerical data.

In Table I even- and odd-mode geometrical capacitances are
successfully compared with the values reported in [10, Table II],
[11, Table II] and [14, Table I]. A broad range of d/b ratios is
considered in [8, Tables I and II]: maximum differences between
our even- and odd-mode impedance values and Stracca’s et al. are
limited to about 0.06% (which is the comparison accuracy achievable
with the published four-figure data), except for two odd-mode cases,
where differences were of about 0.1 and 0.2%.

Circular conductors have been approximated with polygons having
number of sides ranging from 50 to 100; in the case of the comparison
with [8], both 50 and 80 sides have been employed in the most
critical cases and the results coincide with at least four figures.
Their accuracy can be further checked by computing the coupling
coefficients, involving small differences between even- and odd-mode
impedances: the results appear in Fig. 2, and allow to successfully
extend the range of curves, with respect to the range considered in
[9], for at least three decades.

III. CHARGE DENSITIES AND FIELD MAPS

In the above calculations, the SC formula has been inverted to
provide transformation from the analyzed geometry into the real axis
of an intermediate complex plane, and then directly applied to provide

TABLE 11
CAPACITANCES OF Two-RoD CONFIGURATIONS
Present work  Chisholm / Levy Fikioris & TarLu &
McDermott Tsalamengas Olesen
[14,Tab.T]  [14,Tab.X] _ [10,Tab.If]  [11, Tab.1]]

Cre Cle Cre Cle Cle Cle Cle Cle Cle Cle
dfv s/b even odd even odd even odd even odd even odd

0354 0176 39137 75506 39142 7.5347 39153 75528 39132 75494 3912 7543
0400 0226 4.5052 7.5397 45093 7.5347 45080 7.5401 4.5043 75888
0436 0280 5.0344 75472 50281 75347 5032 75501 50332 75468
0462 0338 54731 75347 54731 75347 54718 75371 54718 75343
0482 0398 58465 7.5366 58497 7.5347 58446 75339 58455 75339
0498 0462 6.1728 7.5464 61648 7.5347 61721 75436 61721 7.5451
0.510 0.528 64404 7.5525 64257 7.5347 64380 75514 64399 75508
0518 0596 6.6427 7.5384 66404 7.5347 66424 75371 66421 75366
0.534 0806 7.0741 7.5369 70727 7.5347 70710 75359 70721 75361
0.544 1168 7.3833 7.5322 73855 7.5347 73806 7.5285 73819 75304 7.388 7535
0400 0.080 4.1657 11.2405 4,1646 11.0783 4.1553 112882 4.1651 11.2371 4167 11.240
0400 0.120 42641 95140 42631 94595 42626 95317 4.2634 95118 4265 9.558
0400 0.160 43587 85167 43578 84935 43516 85919 43579 85152
0400 0200 44489 7.8594 44483 7.8478 44444 78652 44481 7.8584
0400 0240 4.5346 73924 45340 73863 45358 73982 4.5337 73917
0400 0400 48273 63905 48273 63903 4.8263 63914 4.8265 63903
0400 0600 50821 588356 50826 58862 50819 58848 50818 58848
0400 0760 52131 56947 52134 56949 52130 56946 52128 56940 5217 5700
0
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Fig. 2. Computed (x.%,4,0) and linearly interpolated values for the

coupling coefficient.

further transformation from this real axis into a rectangle, in which
opposite sides are electric or magnetic walls and capacitances are
readily evaluated.

The sides of the analyzed geometry which lie on electrodes are
mapped into this rectangle with lengths which account for the side
charges: in the limit, reducing side lengths, local charge densities can
be accurately evaluated.

The number of sides used here to accurately describe the conductor
boundaries lead to charge density evaluations which appear to be
suitable for many practical purposes. As an example, consider the
structure of Fig. 1. Side charges for the rod electrodes have been
computed, representing the rods with 80-side regular polygons, and
actual charge points have been plotted in Fig. 3 after suitable
normalization. Comparison of these curves with Fig. 2 in [10] reveals
negligible differences, at least at the draw level, except on the right
side of Fig. 3(a). In this region, our curve 2 is higher than curve
3, instead of lower as in [11, Fig. 2(a)]. Note that, for curve 1,
dimensions of s/b = 1 have been assumed, instead of s/b = 1.06,
as reported in [11], probably due to a typing error.

When the parameters of the two SC formulas leading from the
intermediate complex plane to the analyzed structure and to the final
rectangle are known, it is very easy to map any defined pattern from
one geometry to the other, and methods are described in [1] and [2].
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Fig. 3. Surface charge densities on the conductors of Fig. 1. The voltage on
the first conductor is 1V; the second conductor and the two conducting planes
are grounded. (a) First conductor; (b) second conductor. (1) d/b = 0.96, s/b
1.00; (2) d/b = 0.40, s/b = 0.48; (3) d/b = 0.544, s/b = 1.168.

Equipotential and flux lines can be determined in the rectangle by
inspection, and it seems worth discussing application of the simple
mapping predictor-corrector techniques of [2]. Consider for instance
the structure shown in [10, Fig. 3], which is reported in Fig. 4.
Rectilinear magnetic walls CD and EF have been imposed, normal to
the outer and inner conductors in a region where flux line patterns can
be easily divined, and an accurate map of the boundary ABCDEFGH
has been obtained by mapping into infinity the side AH; twenty-four
side poligons have been assumed to represent the inner conductor.
The same equipotential and field lines considered in [10] have been
derived and they are undistinguishable from that plotted in [10, Fig.
3] (see Fig. 4, continuous lines).

A predictor-corrector algorithm (from the rectangle to the interme-
diate complex plane) and the Heun algorithm (from the intermediate
to the analysed geometry plane) have been applied as in [2] by
segmenting patterns into 200, 500, and 1000 parts. Errors in the
obtained maps, evaluated from the distance between the actual end
point and its due position (when known) are of the order of 0.05% of
the inner conductor diameter with 1000 segment patterns; they double

H

Fig. 4. Equipotential and flux lines of shielded single conductor line. Dashed
lines are derived from arbitrarily imposed boundary magnetic walls.

or quadruple with 500 or only 200 segments. More significantly, it
can be noted that equipotential and field lines start and end on the
real axis of the intermediate plane: accuracy can be appreciated by
noting that the end points of 1000 segment patterns are found in this
plane at a distance from the real axis of the order of 1/10 of the
length of their last segment.

Nevertheless, straightforward definition of the boundary to be
mapped, as for the above CD and EF magnetic walls, is not always
possible; sometimes, the actual structure cannot be accurately mapped
using the simple methods in [2].

The first problem is not insurmountable in most practical cases:
conformal mapping of approximate geometries have already been
considered in [14]. and methods to analyze structures by assuming
approximate magnetic walls boundaries with some error evaluations
have been presented in [3] and [5]. To show that useful results can
be derived, at least for significant regions of actual structures, local
errors have been stressed by imposing incongruous magnetic walls in
Fig. 4 on the segments IL and MN, and the new HILMNA geometry
has been analyzed.

As expected, in proximity of the imposed magnetic walls, equipo-
tential and flux lines look very different from the previous exactly
computed ones (see Fig. 4, dashed lines), but a large region can be
recognized where fields are relatively unperturbed and correct pattern
shapes are retained.

This suggests an approach to the second problem, i.e., to consider
partial geometries, defined with some overlap near the fictitious
boundaries, which are normally easily managed by the conformal
mapping procedure.

IV. CONCLUSIONS

Slab line structures have been revisited, and results from various
analysis methods have been compared with capacitance or impedance
values derived from Schwarz—Christoffel conformal mapping, and
very good agreement has been found.

In addition, surface charge densities evaluation and field map
assessment via conformal mapping have been briefly discussed. Some
topics related to partial mapping and to the defined geometries have
also been dealt with.
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A Note on Experimental Determination of Small-Signal
Equivalent Circuit of Millimeter-Wave FETs

A. Eskandarian and S. Weinreb

Abstract—New expressions for determination of the parasitic induc-
tances Ly, L, and L, in the small-signal equivalent circuit of high-
frequency Field Effect Transistors (FET’s) are derived, based on the
“active/passive” (also known as *“hot/cold”’) measurement technique de-
veloped in literature. These equations are required when the size of
parasitic capacitances is such that their effect on the forward-biased gate
measurement cannot be ignored, as has been the case with our millimeter-
wave transistors, The method produces an equivalent circuit which has
been used successfully for design of multi-stage amplifiers at 60 and 94
GHz.
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Fig. 1. The small-signal equivalent circuit of the FET’s including the
parasitic elements. The intrinsic FET model is shown in the dashed box.

I. INTRODUCTION

The most common method for determination of the equivalent
circuit of a microwave Field Effect Transistor (FET) has been through
minimization of the difference between measured and computed
S-parameters versus frequency. However this procedure may not
produce unique element values for the equivalent circuit and the de-
pendence of element accuracy upon measurement accuracy is unclear.
Dambrine et al. [1] and Berroth and Bosch [2], [3] recently presented
methods that include S-parameters of the FET biased into a “passive”
state, such as pinch-off or forward-biased gate, to provide additional
data on the equivalent circuit. With this additional data it is possible
to uniquely determine equivalent circuit values from measurements
at a single frequency. Multiple-frequency measurements can then be
utilized to test the accuracy of the data and the correct topology of the
equivalent circuit as manifested by invariance of the element values
with frequency.

The purpose of this letter is to make a necessary addition to the
equations given in [1]-[2] and present experimental data showing
invariance of equivalent circuit values from 1 to 18 GHz.

II. BACKGROUND

In “active/passive” measurement techniques, the equivalent circuit
is conceptually divided into intrinsic and extrinsic parts. In a com-
monly used FET equivalent circuit shown in Fig. 1, the intrinsic
part is shown in a dashed box. The extrinsic part includes the
parasitic elements, i.e., the source, drain and gate resistances, and
any additional inductances or capacitances which may exist due to
the device layout, via holes, bonding pads, etc.

The parasitic elements are determined from the “passive” FET
measurements, where the FET is biased similar to a diode, i.e., with
zero voltage on the drain terminal. In this mode of operation the
intrinsic part of the FET model in Fig. 1 should be replaced with an
appropriate diode model that will depend on the bias voltage on the
gate. Two types of gate biasing can be employed.

In the first type, a gate bias is chosen such that the channel under
the gate is completely pinched off. This usually means a negative
gate voltage. The drain and source terminals are at zero potential.
The capacitive components of the equivalent circuit are dominant
under this bias condition. The circuit diagram for this case is shown
in Fig. 2, where it is assumed that the gate-source and gate-drain
capacitances are equal to Cp (actually, depending on the lay-out
structure of a FET, there is a small difference between these two
capacitances). The measured S-parameters show capacitive behavior
and are converted to Y -parameters. The value of C» is determined
from the imaginary part of Y12. The values of C,q and Cpg4 can then
be determined from the imaginary parts of Y22 and Y1; simply by
removing the contribution of Cj to these Y -parameters.
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